| Правила | Регистрация | Пользователи | Поиск | Сообщения за день | Все разделы прочитаны |  Справка по форуму | Файлообменник |

Вернуться   Форум DWG.RU > Программное обеспечение > Расчетные программы > SCAD > SCAD Определение расчётной длины колонн в пространственной модели

SCAD Определение расчётной длины колонн в пространственной модели

Ответ
Поиск в этой теме
Непрочитано 07.08.2014, 22:31
SCAD Определение расчётной длины колонн в пространственной модели
Tyhig
 
Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР
 
Ленинград
Регистрация: 30.01.2008
Сообщений: 14,745

Добрый день.

Познакомился с способом Ильнура по определению расчётной длины колонн в SCAD.
1) SCAD сам в расчёте определяет самый неустойчивый элемент КМ, видимо от сжатия
2) Из SCAD берём продольное усилие N данного элемента от комбинации усилий (видимо самой плохой)
N = Пи^2*E*Imin / (мю*l)^2
Мю = (Пи^2*E*Imin / (N * l^2))^0,5
Для стали Мю =(3,14^2*210*10^9*Imin/(N*l^2))^0,5
Е – модуль Юнга; Imin - минимальный главный центральный момент инерции поперечного сечения стержня (очевидно, что при потере устойчивости изгиб стержня произойдет в плоскости наименьшей изгибной жесткости); мю – коэффициент приведения длины, зависящий от формы потери устойчивости; l – длина стержня.

Условие применимости формулы Эйлера, через понятие гибкости стержня.
Лямбда (гибкость) = l расчётная длина / i радиус инерции > лямбда предельное = Пи* (E/напряжение предела пропорциональности)^0,5
Предельная гибкость – постоянная для данного материала величина. Например, для стали Ст. 3 предельная гибкость около 100.
Формула Эйлера основана на интегрировании дифференциального уравнения упругой линии стержня. Это уравнение справедливо только в пределах линейной зависимости между напряжениями и деформациями, поэтому и формула Эйлера применима только до тех пор, пока критические напряжения не превосходят предела пропорциональности сигма пц.


3) По авторитетному мнению IBZ, применение данного метода к 3Д схеме даёт принципиально неправильные значения мю.
Обосновывает он это простым примером консоли мю=2 с силой на верху.
Со своей стороны просчитал пример в скаде.
Консольная колонна высотой 3 м, сила 750 кН, двутавр 20К1 по СТО АСЧМ.
КЗУ системы по первой форме потери устойчивости 1,014 (потеря устойчивости из плоскости стенки).
КЗУ системы по второй форме потери устойчивости = 2,898.
КЗУ местной потери устойчивости 16,16.
Свободные длины СКАДа в плоскости стенки двутавра 5,99 м, из плоскости стенки 10,14 м.
Далее используем методику п.2 выше.
Мю =(3,14^2*210*10^9*Imin/(N*l^2))^0,5
l 3 м
N 750000 Н
Imin 1,3414E-05 м4
мю= 2,02846
Из теории известно, что мю=2.
Разница 1% (видимо от 1% от КЗУ системы).
Результат получен только для одной оси двутавра - ИЗ плоскости стенки (в плоскости полки). Результат для второй оси получить в данной схеме не удастся, а в данном случае его получить вообще невозможно.
Результат удалось интерпретировать только после анализа формы потери устойчивости (двутавр естественно гнётся куда проще). При неявном непонятном анализе в сложных схемах, результат использовать невозможно.

Обратите внимание на свободные длины. Вторая 10 м из-за мю=3 по формуле Эйлера.
l 3 м
N 750000 Н
Imin 3,846E-05 м4
мю= 3,434 Мю =(3,14^2*210*10^9*Imin/(N*l^2))^0,5
свободная длина 10,30 м

Для сравнения Кисп= 1,34 из плоскости стенки (0,78 в плоскости стенки) с мю = 2. То есть скад по устойчивости показывает, что система несёт нагрузку, а по формуле СНиПа система перегружена на 34% и уже обрушается. То ли в формуле СНиП запасы 34%, то ли скад врёт.


Вывод1 : Применение методики в 3Д постановке может дать правильный результат исключительно при очевидной форме потери устойчивости.
Вывод2 : СКАД считает устойчивость системы каким-то своим способом. При этом не учитываются запасы стального СНиПа. Поэтому система может соответствовать нормам только при КЗУ системы более 1,35 (а может и не соответствовать, надо проверять формулами СНиП).
Вывод3 : свободные длины считаются СКАДом как длина * мю по формуле Эйлера. В эксперименте свободная длина соответствовала расчётной только в первой форме потери устойчивости. То есть им никак нельзя доверять в трёхмерной постановке в сложных схемах.


Ну я в общем всё сделал как надо (наверное), ввёл шарниры по концам крестовых связей в связевых поясах, шарниры в балках...
А SCAD выдаёт ведь только 1 неустойчивый элемент...
Ну и выдал мне балку.
Я повысил жёсткость балок на типоразмер.
Теперь выдаёт неустойчивую крестовую связь (вертикальную, вообще разные выдавал). А мне для расчёта мю нужна самая неустойчивая колонна.

На работе то я уже решил вопрос тем, что леплю г... (мю=1) в приказом порядке под надзором свыше.
Но очень интересно, как выходят из ситуации опытные гуру КМ.
Подскажите, пожалуйста, что тут правильно делать ?

Ведь гибкие связи по идее и должны быть неустойчивы и должны выключаться при сжатии...
И всегда будут выдаваться расчётом как самый неустойчивый элемент первее колонн...

И вопрос №2. Какую гибкость всё-таки правильно задавать ригелям пространственных одноэтажных рам (в разных направлениях шарнир или заделка на колонне) в анализе устойчивости ?
Видел примеры с лямбда=400, но почему 400 ? Видел рекомендации делать 1, но тогда все балки не проходят 100-130 раз, красные.
В общем понял что брать надо побольше, так как СКАД всё равно их устойчивость не проверяет, но какую именно цифру и как обосновать ?
__________________
"Безвыходных ситуаций не бывает" барон Мюнгхаузен

Последний раз редактировалось Tyhig, 09.03.2017 в 14:09.
Просмотров: 68062
 
Непрочитано 29.10.2014, 18:50
#181
Ильнур

КМ, КЖ, КЖФ, КМД, промка и не только
 
Регистрация: 30.05.2007
Уфа
Сообщений: 20,695


Цитата:
Сообщение от Бахил Посмотреть сообщение
Геометрическая нелинейность бывает двух видов.
Либо большие перемещения.
Либо продольный изгиб.
Здесь речь идёт о продольном изгибе. Вернее о продольно-поперечном изгибе. Причём в весьма примитивной постановке - общей потери устойчивости. К коэффициентам свободной длины эта постановка имеет весьма отдалённое отношение.
В лучшем случае мю будет верно для единственного стержня. И то не факт.

----- добавлено через ~2 мин. -----
Весь вопрос в том для чего это мю нужно. Для проверки устойчивости отдельного стержня можно как-то натянуть.
Для проверки предельной гибкости не применимо.
Одну минуточку, совсем не понял.
СКАД задачу Эйлера решает 1 к 1. И это факт (бифуркационная задача одна и та же - ищется равновесная форма, и критическая сила по этой форме при стремящейся к нулю амплитуде). А коэффициент свободной длины и есть ПРИВЕДЕНИЕ к Эйлеру. И СКАДовский мю, особенно для наиболее уязвимого элемента в стержневой системе, имеет ПРЯМЕЙШЕЕ и строго законное отношение к нормативной поэлементной проверке через мю.
Соответственно, и другие мю имеют место быть в силе.
__________________
ilnur

Последний раз редактировалось Ильнур, 29.10.2014 в 18:57.
Ильнур вне форума  
 
Непрочитано 29.10.2014, 22:10
#182
Бахил

?
 
Регистрация: 17.06.2014
Царицын
Сообщений: 8,133


Ох. Последний раз. Два варианта.
1. det(R-N*G)=0
2. det(R-G(N))=0
В первом случае задачу можно свести к проблеме собственных чисел. Но значения весьма приближённые - МКЭ.
Второй более точный - метод начальных параметров. Можно получить только первую форму.
__________________
Сон разума рождает чудовищ. (испанская пословица)
Бахил вне форума  
 
Непрочитано 30.10.2014, 07:23
#183
Ильнур

КМ, КЖ, КЖФ, КМД, промка и не только
 
Регистрация: 30.05.2007
Уфа
Сообщений: 20,695


Цитата:
Сообщение от Бахил Посмотреть сообщение
Ох.
1. det(R-N*G)=0
2. det(R-G(N))=0
И как эти постановки опровергают Эйлерово решение? В СКАД решается обыкновенная "энергетическая" матрица. det>0 - значит для наращения деформации системы нужно наращивать нагрузку, det<0 - все поехало безо всякой добавки.
В СНиП за расчетную длину принята Эйлеровская длина. Это в принципе. Есть конечно и "искусственные" табличные нормированные длины, но это уже совсем не в тему.
__________________
ilnur
Ильнур вне форума  
 
Непрочитано 30.10.2014, 11:35
#184
Бахил

?
 
Регистрация: 17.06.2014
Царицын
Сообщений: 8,133


Offtop: Отошлю-ка к Смирнову и К
Зайдём с другой стороны.
решив систему (R-G(N))=Р, найдём перемещения и усилия с учётом продольно-поперечного изгиба. Никакого ми и фи тут не нужно. Весь вопрос в том как эти усилия будут соотносится с СП.
Ты же предлагаешь определить Ркр и затем перейти к Эйлеровскому продольному изгибу.
Загвоздка в том, что фи Эйлера несколько отличается от фи СП.
__________________
Сон разума рождает чудовищ. (испанская пословица)
Бахил вне форума  
 
Непрочитано 30.10.2014, 12:43
#185
Ильнур

КМ, КЖ, КЖФ, КМД, промка и не только
 
Регистрация: 30.05.2007
Уфа
Сообщений: 20,695


Цитата:
Сообщение от Бахил Посмотреть сообщение
Offtop: Отошлю-ка к Смирнову и К
Зайдём с другой стороны.
решив систему (R-G(N))=Р, найдём перемещения и усилия с учётом продольно-поперечного изгиба. Никакого ми и фи тут не нужно.
И в СКАДе нет ни мю, ни фи. А есть лишь УСИЛИЯ, при которых произошел пипец. И это усилие для самого уязвимого и есть ровно Эейлерова сила, она совпадает с ней со счетной точностью.
Цитата:
Сообщение от Бахил Посмотреть сообщение
Весь вопрос в том как эти усилия будут соотносится с СП.
А вот усилия для проверки берутся из обычного расчета (линейного, нелинейного, деформационного, такого, сякого, из диаграммы кремоны и т.д.).
Цитата:
Сообщение от Бахил Посмотреть сообщение
Ты же предлагаешь определить Ркр и затем перейти к Эйлеровскому продольному изгибу.
Не, не так. Я во-первых не предлагаю. Это СКАД так делает: получив усилие, при которой крантец, по формуле Эйлера для идеального стержня вычисляется расчетная длина. И эта длина сопостовляется с физической (от узла до узла). Так имеем корректное (СНиПовское) мю. Все законно. И даже численно правильно, особенно для наиболее уязвимого элемента.
Цитата:
Сообщение от Бахил Посмотреть сообщение
Загвоздка в том, что фи Эйлера несколько отличается от фи СП.
Вот тут я вообще не понял. У Эйлера нет фи. Фи - это же коэффициент приведения реального стержня к Эйлеровому. Эйлер себя к себе не приводил. Он вообще только чисто упругий и идеальный стержень при нулевом эксцентреситете приложения нагрузки посчитал. На предмет бифуркации. Причем даже не учел сдвиг, и прочую лабуду.
__________________
ilnur
Ильнур вне форума  
 
Непрочитано 30.10.2014, 18:09
#186
Бахил

?
 
Регистрация: 17.06.2014
Царицын
Сообщений: 8,133


Цитата:
Сообщение от Ильнур Посмотреть сообщение
У Эйлера нет фи.
фи Эйлера = Ркр/Рупр.
__________________
Сон разума рождает чудовищ. (испанская пословица)
Бахил вне форума  
 
Непрочитано 30.10.2014, 19:03
#187
Vovans75


 
Регистрация: 28.03.2013
Сообщений: 3


Если можно вставлю свои пять копеек. Обычная консольно защемленная балка. Задача о нахождении критической силы потери устойчивости плоской формы изгиба. Пробую считать в СКАДе и в параллелях в Лире (Тип схемы 5 Тип элемента - пространственный стержень). Лира выдает коэффициент запаса устойчивости системы, а СКАД пишет система абсолютно устойчива. В чем подвох?
Vovans75 вне форума  
 
Непрочитано 30.10.2014, 19:45
#188
yrubinshtejn

Конструктор (construction)
 
Регистрация: 18.12.2012
Сообщений: 3,963


Цитата:
Сообщение от Vovans75 Посмотреть сообщение
Лира выдает коэффициент запаса устойчивости системы, а СКАД пишет система абсолютно устойчива.
Ни чего не понял.В чём вопрос?
yrubinshtejn вне форума  
 
Непрочитано 30.10.2014, 20:48
#189
Vovans75


 
Регистрация: 28.03.2013
Сообщений: 3


Вопрос в том почему СКАД не выдает коэффициент запаса при анализе несущей способности конструкции (консольная балка) по критерию потери устойчивости плоской формы изгиба.
Vovans75 вне форума  
 
Непрочитано 03.11.2014, 17:09
#190
Ильнур

КМ, КЖ, КЖФ, КМД, промка и не только
 
Регистрация: 30.05.2007
Уфа
Сообщений: 20,695


Цитата:
Сообщение от Бахил Посмотреть сообщение
фи Эйлера = Ркр/Рупр.
Pкр - Эйлерова критическая сила. Она найдена при E=const.
А Рупр что за вещь?
Если подразумевалось, что Pкр - для реального стержня, то какой смысл говорить о двух фи - нормативных и Эйлеровых? Вообще процессор СКАДА не имеет опции "физнелин", E=const. А стержень для СКАДа и есть стержень, идеальный.
Фи табличные в СНиП вычислены для реальных стержней. Как известно, при больших гибкостях критическая сила для реального стержня начинает совпадать с Эйлеровой. Но и в этих случаях в фи искусственно введен коэфф. надежности 1,3.
Так о каком-таком "Фи Эйлера" можно говорить?
Vovans75, СКАД не анализирует устойчивость ПФИ стержней. Только как сжатых.
__________________
ilnur
Ильнур вне форума  
 
Непрочитано 03.11.2014, 17:29
#191
Бахил

?
 
Регистрация: 17.06.2014
Царицын
Сообщений: 8,133


Цитата:
Сообщение от Ильнур Посмотреть сообщение
А Рупр что за вещь?
Рупр = A*Ry
__________________
Сон разума рождает чудовищ. (испанская пословица)
Бахил вне форума  
 
Непрочитано 03.11.2014, 17:38
#192
Ильнур

КМ, КЖ, КЖФ, КМД, промка и не только
 
Регистрация: 30.05.2007
Уфа
Сообщений: 20,695


Цитата:
Сообщение от Бахил Посмотреть сообщение
Рупр = A*Ry
Ну, можно и такую теорию придумать. Но зачем?
В нормах такая форма записи (фи*P/R) применена исключительно для инженерных душ, чтобы привычно было.
Теперь к исходному: из СКАДа мы имеем чисто Эйлеровы результаты, никакие R в анализе устойчивости не участвуют, для нормативной проверки мы из процессора берем расчетные длины ДЛЯ ПРАВИЛЬНОГО ПОДБОРА ФИ-нормативных.
Ну и причем тут какое-то за уши притянутое сюда "фи Эйлера"?
__________________
ilnur
Ильнур вне форума  
 
Непрочитано 03.11.2014, 18:00
#193
Бахил

?
 
Регистрация: 17.06.2014
Царицын
Сообщений: 8,133


Цитата:
Сообщение от Ильнур Посмотреть сообщение
ДЛЯ ПРАВИЛЬНОГО ПОДБОРА ФИ-нормативных
"ДЛЯ ПРАВИЛЬНОГО ПОДБОРА" используй таблицу СП для определения мю.
__________________
Сон разума рождает чудовищ. (испанская пословица)
Бахил вне форума  
 
Непрочитано 04.11.2014, 18:52
#194
Ильнур

КМ, КЖ, КЖФ, КМД, промка и не только
 
Регистрация: 30.05.2007
Уфа
Сообщений: 20,695


Цитата:
Сообщение от Бахил Посмотреть сообщение
"ДЛЯ ПРАВИЛЬНОГО ПОДБОРА" используй таблицу СП для определения мю.
Бахил, ты в корне не прав. Людя`м недостаточно таблиц СНиП (а что такое СП?), они для самых простых случаев.
Кстати, мю в них в принципе определены по тем же предпосылкам. Можно взять Лейтеса, у него таблицы пошире.
Я так и не понял, откуда возникло "Фи Эйлера", и при чем оно тут.
__________________
ilnur
Ильнур вне форума  
 
Непрочитано 05.11.2014, 10:11
#195
Бахил

?
 
Регистрация: 17.06.2014
Царицын
Сообщений: 8,133


Ильнур, два аспекта.
1. Если бы в СП (так короче, чем СНиП) коэффициенты надёжности были бы введены только на нагрузку и сопротивления, то в методике определения Ркр по Эйлеру (если тебе не нравиться "ФИ Эйлера") не было бы ничего "криминального". Однако эти коэффициенты введены на всё подряд. Поэтому "Ркр по Эйлеру" отличается от "Ркр по СП" .
2. "Ркр по Эйлеру" для продольного изгиба. Для продольно- поперечного Ркр будет несколько иное.
__________________
Сон разума рождает чудовищ. (испанская пословица)
Бахил вне форума  
 
Непрочитано 05.11.2014, 11:01
#196
Ильнур

КМ, КЖ, КЖФ, КМД, промка и не только
 
Регистрация: 30.05.2007
Уфа
Сообщений: 20,695


Цитата:
Сообщение от Бахил Посмотреть сообщение
Ильнур, два аспекта.
1. Если бы в СП (так короче, чем СНиП) коэффициенты надёжности были бы введены только на нагрузку и сопротивления, то в методике определения Ркр по Эйлеру (если тебе не нравиться "ФИ Эйлера") не было бы ничего "криминального". Однако эти коэффициенты введены на всё подряд. Поэтому "Ркр по Эйлеру" отличается от "Ркр по СП" .
2. "Ркр по Эйлеру" для продольного изгиба. Для продольно- поперечного Ркр будет несколько иное.
1. Не так. Фи табличные для продольного изгиба аппроксимированы по ф. (8), (9) и (10) СНиП по результатам, как заявлено официально, расчетов по деформированной схеме в предположении малости перемещений по деформированной схеме с учетом пластических деформаций, естественно с начальными отклонениями. Коэфф-т 1,3 вводился только для очень гибких стержней, у которых влияние несовершенств несущественно, а брать Pэ естественно было бы опасно.
2. Причем тут поперечный изгиб? Мы же говорим о "фи" - он даже называется "коэффициент продольного изгиба". Мы говорим только о том (по крайней мере я), что в СНиПе за расчетную длину принята длина эквивалентного по Ркр Эйлерова стержня. И никаких гвоздей (спецоговорки не в счет). Идеально прямого упругого всю дорогу шарнирно опертого в концах и центрально-центрально нагруженного. Например, для консоли мю=2. Строго!
3. Твоя мысль вообще непонятна.
__________________
ilnur
Ильнур вне форума  
 
Непрочитано 05.11.2014, 11:18
#197
Бахил

?
 
Регистрация: 17.06.2014
Царицын
Сообщений: 8,133


Цитата:
Сообщение от Ильнур Посмотреть сообщение
Мы же говорим о "фи" - он даже называется "коэффициент продольного изгиба".
Только для центрально-сжатых стержней. Вот для них и определяй по СКАДу.
__________________
Сон разума рождает чудовищ. (испанская пословица)
Бахил вне форума  
 
Непрочитано 05.11.2014, 11:21
#198
yrubinshtejn

Конструктор (construction)
 
Регистрация: 18.12.2012
Сообщений: 3,963


Бахил
Мною потеряна нить ваших обсуждений, но
Цитата:
Сообщение от Бахил Посмотреть сообщение
Только для центрально-сжатых стержней. Вот для них и определяй по СКАДу.
не могу не согласиться.
yrubinshtejn вне форума  
 
Непрочитано 05.11.2014, 11:27
#199
eilukha


 
Регистрация: 10.09.2007
Сообщений: 6,398


Цитата:
Сообщение от Ильнур Посмотреть сообщение
СКАДовский мю, особенно только для наиболее уязвимого элемента в стержневой системе, имеет ПРЯМЕЙШЕЕ и строго законное отношение к нормативной поэлементной проверке через мю.
Цитата:
Сообщение от Ильнур Посмотреть сообщение
Соответственно, и другие мю имеют место быть в силе.
- в пределах одной формы разве они верны для всех элементов?
eilukha на форуме  
 
Непрочитано 05.11.2014, 12:27
#200
Ильнур

КМ, КЖ, КЖФ, КМД, промка и не только
 
Регистрация: 30.05.2007
Уфа
Сообщений: 20,695


Цитата:
Сообщение от Бахил Посмотреть сообщение
Только для центрально-сжатых стержней. Вот для них и определяй по СКАДу.
Опять двадцать пять... В СНиП только ТАКИЕ фи, других НЕ ИМЕЕТСЯ. И только ОНИ применяются при других НДС. И определяются ОНИ точно так же (по п.5.3 СНиП).
Т.е. РАЗНИЦЫ НЕТ.
Блин, ты вообще о чем?
Может о расчетной длине изгибаемого элемента в смысле устойчивости ПФИ?

----- добавлено через ~12 мин. -----
Цитата:
Сообщение от eilukha Посмотреть сообщение
- в пределах одной формы разве они верны для всех элементов?
А почему, стесняюсь спросить, они неверны? Что такое вообще "верность" в этом деле? Система потеряла отпорность, т.к. эл-т А крякнул согласно Эйлеру. При этом эл-т Б имел нагрузку Х. Но не крякнул. Мог бы нести и больше (>Х). Но насколько? Допустим в 2 раза. Дык вот эти 2 раза покажет поэлементная проверка, с высоким мю. Потому как мю большое как раз из-за НЕДОГРУЖЕННОСТИ элемента.
А как Вы представляете себе иной способ анализа?
Кстати, причем тут форма? Форм может быть 100500, и все равно эл-т Б не крякается. Тут о РСН наверно надо говорить.
__________________
ilnur

Последний раз редактировалось Ильнур, 05.11.2014 в 12:42.
Ильнур вне форума  
Ответ
Вернуться   Форум DWG.RU > Программное обеспечение > Расчетные программы > SCAD > SCAD Определение расчётной длины колонн в пространственной модели

Размещение рекламы
Опции темы Поиск в этой теме
Поиск в этой теме:

Расширенный поиск


Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
Армирование колонн "... по полосе между наклонными сечениями" в Scad 11.5 Jekson Echowar SCAD 40 12.03.2019 08:59
Разработка ПОС, искусство проектирования Tyhig Технология и организация строительства 106 25.10.2015 19:00
импорт 3D модели в SCAD jola Расчетные программы 7 14.07.2014 10:57
Подготовка расчётной модели здания swell{d} Расчетные программы 16 14.05.2014 11:02
Расчетные длины по SCAD, SAP2000 и Еврокод. Сравнение sattva Конструкции зданий и сооружений 7 15.11.2011 10:58